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Onset of convection in a variable-viscosity fluid 
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The Rayleigh number R, in a horizontal layer with temperature-dependent viscosity 
can be based on the viscosity a t  To, the mean of the boundary temperatures. The 
critical Rayleigh number Roc for fluids with exponential and super-exponential 
viscosity variation is nearly constant a t  low values of the ratio of the viscosities a t  the 
top and bottom boundaries; increases at moderate values of the viscosity ratio, 
reaching a maximum a t  a ratio of about 3000, and then decreases. This behaviour is 
explained by a simple physical argument based on the idea that convection begins 
first in the sublayer with maximum Rayleigh number. The prediction of Palm (1960) 
that certain types of temperature-dependent viscosity always decrease Roc is confirmed 
by numerical results but is not relevant to the viscosity variations typical of real 
liquids. The infinitesimal-amplitude state assumed by linear theory in calculating 
Roc does not exist because the convection jumps immediately to a finite amplitude a t  
Roc. We observe a heat-flux jump a t  Roc exceeding 10% when the viscosity ratio 
exceeds 150. However, experimental measurements of Roc for glycerol up to  a viscosity 
ratio of 3400 are in good agreement with the numerical predictions when the effects 
of a temperature-dependent expansion coefficient and thermal diffusivity are included. 

1. Introduction 

heat sources is governed by the non-dimensional Rayleigh number 
Convection in a horizontal fluid layer with isothermal boundaries and no internal 

agATd3 R=- 

where a: is the thermal expansion coefficient, g is the acceleration due to gravity, AT 
is the temperature drop from the bottom to the top of the layer, d is the layer depth, 
v is the viscosity, K = k/p, is the thermal diffusivity, k is the thermal conductivity, 
p is the density and cp is the specific heat. When the viscosity varies, defining the 
Rayleigh number requires an appropriate choice of viscosity. A widely used possibility 
introduced by Palm (1960) is v,,, the viscosity a t  the mean of the boundary tempera- 
tures. The corresponding Rayleigh number is R,. Other useful choices include ij the 
viscosity a t  the bottom, warm boundary and Y, the mean viscosity in the layer. 

Accurate measurement of the critical Rayleigh number R, for the onset of con- 
vection is never easy. It requires a sensitive method of determining when convection 
begins, accurate knowledge of the material properties, and accurate measurements of 
AT and d. Still, for constant-viscosity fluids, experimental determinations of Re are 
in good agreement with linear theory (Schmidt & Milverton 1936; Silveston 1958). 
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For fluids with strongly temperature-dependent viscosity such as occur in many 
industrial and geophysical contexts, the infinitesimal amplitude convection assumed 
by linear theory should not exist. Instead the convection jumps to a finite-amplitude 
state and subcritical convection is possible (Busse 1967). Although linear theory is 
expected to predict Roc accurately, few experimental results exist. 

The only direct measurements of Roc in fluids with significant viscosity variation are 
by Hoard, Robertson & Acrivos (1970) and Somerscales & Dougherty (1970). In both 
cases, the experimental fluids have viscosities that are greater when the fluids are 
cold and have steeper viscosity gradients at low temperatures. At a viscosity ratio 
between the top and bottom boundaries of about 10, Hoard et al. find a 12 yo decrease 
in Roc relative to a fluid with nearly constant viscosity. This is in reasonable agreement 
with a theoretical calculation by Liang (1969) using the actual viscosity variation of 
the experimental liquid used by Hoard et al. It also seems consistent with work of 
Palm (1960) and Jenssen (1963)) who used a perturbation method to show that Roc 
decreases for a fluid with a small cosine variation of viscosity. 

The maximum viscosity ratio for the measurement,s of Somerscales & Dougherty 
is only about 2. Using the appearnce of the convective flow pattern as the criterion 
for onset, they find a decrease in Roc in fair agreement with the predictions of Jenssen. 
However, using heat-transfer measurements to define the onset, they find an increase 
in Roc as the viscosity ratio increases. 

The only other observations of convective onset with strongly temperature- 
dependent viscosity are by Richter (1978). He does a study of flow structure a t  
viscosity ratios up to 20, similar to the constant-viscosity work of Busse & Whitehead 
(1971). Richter measures the critical temperature differences across the layer but, 
since he does not have sufficient knowledge of the properties of his fluids, he calculates 
the Rayleigh number at higher temperature differences by assuming that Roc = 1707 
(the value for a constant-viscosity fluid with isothermal, no-slip boundaries). This 
procedure clearly gives no insight into the effect of the variable viscosity on R,. 

In  the first part of this paper, we present theoretical calculations which disagree 
with Liang’s result. For viscosity variations similar to Liang’s, we find that Roc 
initially increases with viscosity ratio. When the viscosity ratio exceeds about 3000, 
the onset of convection is governed by the development of a stable region over an 
unstable sublayer and Roc decreases again. For the cosine viscosity variation, our 
calculations confirm the decrease in Roc found by Palm and Jenssen, but demonstrate 
that at large viscosity ratio the structure of the convection is fundamentally different 
from the more realistic viscosity variations. 

Since our predictions are in apparent conflict with the experiment of Hoard et al. 
(1970) and in partial conflict with the results of Somerscales & Dougherty (1970)) 
and since the effect of the finite-amplitude convection a t  Roc is unknown, further 
experimental verification is clearly desirable. The remainder of the paper presents 
results of an experiment to measure Roc a t  viscosity ratios up to 3400. Our results are 
in good agreement with our theoretical predictions. 
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2. Calculation of R ,  
I n  this section, dimensional variables are primed, constants and non-dimensional 

variables are unprimed. Constants and non-dimensional numbers with subscript zero 
are evaluated a t  the mean of the top and bottom boundary temperatures. We use the 
standard non-dimensionalization for convection studies modified for the fact that v' 
and possibly a', k' and the heat capacity cb are temperature-dependent: length 
components xi = axi; time t' = (d2/Ko)t, where K = k/pc,; velocity components 
u; = (Ko/d)ui; temperature T' = (AT)T+Tt, ,;  viscosity v' = vo f; expansion co- 
efficient a' = aoA;  thermal conductivity k' = koK, and heat capacity cp = cpoQ.  We 
want to study a small perturbation 8 to the linear, non-dimensional conductive 
temperature profile = 1 - x3. Note that the non-dimensional vertical co-ordinate is 
taken to  be 0 at the bottom boundary and + 1 a t  the top boundary. Thus, the mean of 
boundary temperatures is To = Q. 

Using the Boussinesq approximation, the first-order equations for the perturbed 
quantities ui, p (pressure) and 8 are 

where, according to convention, repeated subscripts imply summation with = 1 
if i = j, 0 otherwise. Note that f, A, K and Q all multiply first-order terms containing 
ui or 8. Thus only the dependence off, A ,  K and Q on the zeroth-order temperature 
5? enters the first-order equations. Since 5? is a known function of x3, f, A ,  K and Q 
are also known functions of x3.  

Pellew & Southwell (1940) prove for constant viscosity that the marginally stable 
state separating growing from decaying modes is time-independent. Their argument 
can easily be generalized to the variable-properties case. We therefore drop the time 
derivatives in (1)  and (3). We then eliminate ul, u2 and p and seek a steady cellular 
solution 

4x1, x2, xs) = W 3 )  exp i(lX1 + mx,), 

RoAa'8 = (By) (D2+a2) W+2(Df ) (D2-a2)DW+f(D2-a2)2  W ,  

u3(x1, x2 ,  x 3 )  = W ( x 3 )  exp i(hl + mx2)7  

giving 

where D denotes differentiation with respect to the vertical co-ordinate x3, and 
a2 = 12+ m2. Equation (3) becomes 

(4) 

K ( D 2 - ~ 2 ) 8 +  (DO) ( D K )  + [Q-DQ (1  - x S ) ]  W = 0. 

- Roa28 = (D2f) (D4 -a4) 8 + 2(Df)  (D2 - a2)2 DO + f (D2 - u ~ ) ~  8, 

(5) 

(6) 

I n  the case A = K = Q = 1, (4) and (5) yield 

which is equation (1)  of Booker & Stengel (1978). In  general, however, it is easier to 
work directly with the two equations (4) and ( 5 ) .  

14-2 
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We investigate three types of non-dimensional viscosity variation : 

1 

'I0 

f = - exp P(T'), 

where 

(9) 

(remember that the mean of the boundary temperatures To = 8). The function (7) is 
from Palm (1960) and Jenssen (1963) and is therefore called a Palm-Jenssen fluid. 
The function (8) is used by Torrance & Turcotte (1971) in their numerical study of 
finite-amplitude convection, and is called an exponential fluid. The function (9) is an 
empirical function derived from measurements of the viscosity of glycerol described 
in a later section. 

For the Palm-Jenssen and exponential fluids, we assume that A = K = Q = 1. 
In  order to compare our measurements in glycerol with theory, however, it is necessary 
to include the temperature dependence of A and Q. Fortuitously, K is essentially 
independent of temperature for glycerol (Newman 1968). 

We consider two types of conditions on the top and bottom boundaries: no-slip, 
which implies u1 = u2 = 6' = 0 and stress-free, which implies W = D2 W = 6' = 0. For 
convenience, we denote no-slip boundaries by R (rigid) and stress-free boundaries by 
F (free). We then use a fractional notation with the top of the fraction being the 
condition a t  the top boundary and the bottom of the fraction being the condition a t  
the bottom boundary. Thus F/R means a stress-free top and a no-slip bottom. We 
consider four cases: F/F, R/R, F/R and R/F. 

Equations (4) and (5) are easilytransformed into six first-order differential equations 
which can be numerically integrated by standard techniques. For a fixed horizontal 
wavenumber a, the boundary conditions can be satisfied only for certain values of the 
eigenvalue R,. We use an iterative scheme described in detail by Stengel (1977) to find 
the R, that satisfies the boundary conditions. The initial guess in this scheme is always 
chosen to guarantee that we converge on the R, corresponding to the gravest vertical 
mode. The wavenumber a is then varied to find the absolute minimum R,, which is 
Roc, and its corresponding critical wavenumber a,. The integrations are carried out 
on a CDC 6400 machine, and overall accuracy of Roc is always more than three signifi- 
cant figures. At low viscosity ratio the accuracy of a,  is similar to Roc but, a t  the largest 
ratios calculated, the dependence of Roc on wavenumber becomes markedly weaker, 
and the accuracy of a,  is between two and three significant figures. 

For small viscosity ratio (6) can be fairly easily solved for the F/F case using a 
second-order perturbation method (Stengel 1977). Although his calculation was done 
primarily to check the numerical results, it gives accurate values of Roe for exponential 
fluids to the surprisingly high value of c greater than 5, corresponding to viscosity 
ratios greater than 150. His method will give accurate results for any fluid whose 
viscosity variation can be accurately represented by the first three terms in its power 
series, and is not limited to those whose viscosity decreases with increasing temperature. 
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FIGURE 1. R,, and a, versus viscosity ratio for the Palm-Jenssen fluid. Solid lines are our 
numerical results. The dashed lines are perturbation results of Palm (1960) for F/F boundaries 
and Jenssen (1963) for F/R and R/R boundaries. 

3. Numerical results 
Figure 1 compares our numerical results for the F/F case with viscosity model (7) 

to Palm (1960) and for the R/R and F/R cases to Jenssen (1963). The R / F  case, which 
has not been studied previously, is included for completeness. As one might expect, 
the perturbation and numerical results agree for small viscosity ratios, but diverge a t  
higher values. In  summary, Palm-Jenssen fluids show a decrease in Roc and in a, for 
almost all boundary conditions as the viscosity ratio increases. Only in the R/F  case 
does a,  show an initial small increase which is followed by a decline. Note that Jenssen’s 
prediction for a ,  in the F/R case appears to be very poor except a t  very small viscosity 
ratio. This is unfortunate because his result might have been used to predict large 
horizontal stretching of cells in the Earth if convection were confined to t,he upper 
mantle. The failure of Jenssen’s F/R calculation a t  very small viscosity ratios is not 
entirely unexpected, because it is only good to first order in y ,  while the perturbation 
theories for the R/R and F/F cases are good to second order in y. 

The results for exponential fluids plotted in figure 2 are quite different from 
Palm-Jenssen fluids except at low viscosity ratio. Three regimes can be distinguished: 
(i) low viscosity ratio ( c  5 1.5; vmax/vmin 5 5 )  -Roc and a,  are nearly constant; 
(ii) moderate viscosity ratio (1.5 5 c 5 8; 5 5 vmax/vmin 5 3000) - Roc increases and 
a,  is nearly constant or decreases moderately depending on the boundary conditions; 
(iii) large viscosity ratio (c 2 8; v,,,/vmin 2 3000) -Roc reaches a peak and then 
decreases, while a,  rises rapidly. For large viscosity ratio, the layers with stress-free 
top boundaries (F/F and F/R) seem to forget that their highly viscous tops are free 
and both Roc and ac approach the corresponding case with a no-slip top boundary. 
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FIGURE 2. R,, and a, versus viscosity ratio for the exponential fluid. Solid lines are our numerical 
results; the dashed lines are for the approximate physical argument and the dotted line is from 
the perturbation calculation of Stengel (1977) .  

Note that the Palm-Jenssen fluids seem to have the opposite behaviour. As the 
viscosity ratio for the exponential fluid increases further, Roc eventually drops below 
the value it takes in a constant-viscosity fluid, and a,  for all types of boundaries 
converges to a single line with a, directly proportional to c. 

Figure 3 gives results for the glycerol viscosity variation (9) assuming that To = 20 "C 
and A = Q = K = 1. Only the experimentally important R/R and F/R cases were 
calculated. The behaviour is similar to the exponential fluid, although the magnitude 
of the increase in Roc is considerably larger and the viscosity ratio at the peak is 
slightly higher. The convergence of the results for the two types of upper boundaries 
still occurs a t  large viscosity ratio, although a,  does not appear to be converging to a 
direct dependence on c. 

4. Discussion of theoretical results 
Most of our numerical results can be explained by a simple physical model which 

postulates that convection begins in the sublayer with maximum Rayleigh number. 
For fluids with af/aT c 0,  it is easy to show that this sublayer must extend to the 
bottom boundary. Then the Rayleigh number of a sublayer that extends from the 
base of the fluid to a height d  ̂ = 2d is 

where /3 = A T / d  is the conductive temperature gradient, @o = 1 - $3 is the mean of 
the sublayer boundary temperatures, and a and K are assumed constant. 
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ratio for glycerol with T, = 20 "C. 

We can now ask whether fi0 can be larger than R,. Differentiating (1  1)  gives 

For c < 8 there iS no 2 < 1 for which afi , /aB 6 0. Thus 2, is maximum a t  2 = I and 
equals R,. One would therefore expect the initial instability to extend throughout the 
layer. For c > 8, however, 8, will be maximum when 

(13)  
h z = 8/c, 

and will exceed R,. Convection should then begin in a sublayer which does not extend 
to the upper boundary. The log viscosity ratio of this sublayer is constant and is easily 
shown to be c^ = 2c = 8. 

One can also show that fi,, is constant at large c. Substituting (8) in (1 1 )  and using 
(1 3) gives 

Therefore 
h 

R, = 7 5 . 0 2 R , ~ - ~ e * ~  = 75-02fi .  

Figure 4 shows that the numerical values of fi, converge to 27.5 (A,, = 2038) when the 
lower boundary is rigid, and 20.9 (2,, = 1568) when the lower boundary is free. 
Solving (15 )  for R, and using the asymptotic values of f ioc  gives the dashed curves in 
figure 2. These curves are identical with the numerical results for c > 10 and predict 
the general shape of the numerical curves for c > 5 .  

Finally, one can show that the structure of the incipient flow is const.ant with 
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FIGURE 4. R, (a)  and 2, ( b )  versus viscosity ratio for the exponential fluid. The horizontal 
lines are drawn a t  and labelled with the asymptotic values at  large viscosity ratio. 

respect to the sublayer depth. In  the horizontal direction, the wavenumber non- 
dimensionalized by d  ̂is 

Figure 4 shows that ii, converges to 0.395 & 0.005 as c becomes large. The line 
a, = 0.395~ is shownin figure 2. The asymptotic value of &,is therefore 3.16 f 0.04 z 77. 
Thus the half-wavelength of the convective motion in the sublayer is always equal to 
the depth of the sublayer. 

In  the vertical direction one could show that the eigenfunctions stretched by a 
factor I/$ are identical for large values of c. However, a simple measure of vertical 
similarity which is independent of 2 is an intrinsic aspect ratio aczp,  where zp is the 
non-dimensional position of the peak of the vertical velocity eigenfunction (see 
figure 6). If the stretched eigenfunctions are identical, xp/2 must be constant, and the 
constancy of aczp follows directly from (16). Figure 5 shows that acxD in the R/R 
case converges to 0-71 1 for c > 8. An immediate consequence is that 

An interesting sidelight is that 
xP = 0.2252 = 1*80/~. 

fits all the numerical results for c < 12. The two relations are virtually identical for 
8 < c < 12. 

The constancy of c^, Roc, zi, and aczp a t  large c is to be expected if the fluid over the 
sublayer is stagnant. One can then increase c by adding stagnant fluid to the top ofa  
marginal stable layer, keeping the temperature gradient p constant. The additional 
stagnant fluid will not affect the structure of the sublayer or the fact that it is marginally 
stable. That the stagnation actually happens is clear from comparison of the vertical 
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FIGURE 6. Vertical velocity eigenfunctions for F/F and R/R boundaries with c = 0, 5, 7 and 9 
for the exponential fluid. The peak moves down in the layer as c increases. Note that the hori- 
zontal velocity eigenfunctions are proportional to the vertical derivative of these vertical 
velocity eigenfunctions. Thus as c increases, the horizontal velocity at  the free upper boundary 
becomes small. 
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velocity eigenfunctions for the F/F and R/R cases plotted for increasing values of c 
in figure 6. At c = 9, the eigenfunctions are virtually identical in the top half of the 
layer for both rigid and free boundaries. Furthermore, the vertical derivatives of the 
eigenfunctions are very small near the upper boundary so that both the horizontal 
velocity and temperature eigenfunction are small in the stagnant lid. Consequently 
the boundary conditions a t  the top of the sublayer are essentially rigid and isothermal 
regardless of the actual conditions at the top of the layer. This explains the con- 
vergence of the Roc curves for rigid and free top boundaries in figure 2. 

The Rayleigh number R has a simple physical meaning. Substituting for Ro in 
(15) we get 

A =  asP(dlc)4 
K V ~  exp ( - Bc)' 

Thus a is the Rayleigh number based on a depth 2 = d / c  and a viscosity 
- 
Y = vo exp ( -  Bc). 

It is easy to show that d i s  the scale depth for viscosity variations in the presence 
of the conductive temperature profile 5? and F is the viscosity at the bottom, warm 
boundary. Note also that d = 42, and that 6 is the wavenumber non-dimensionalized 
by d. a and B are obviously convenient definitions of the Rayleigh number and wave- 
numbers a t  very large viscosity ratio in exponential fluids because their critical 
values are independent of c. This result is closely related to the work of Schubert, 
Turcotte & Oxburgh (1969)) who found for a semi-infinite fluid with a viscosity 
that increases exponentially downwards that a = 30 for a rigid top boundary and 23 
for a free top. 

A sublayer should form in glycerol in essentially the same way as in the exponential 
fluid. Using the empirical viscosity function for glycerol with To = 20 "C, there is a 
solution to aB0/a2 = 0 with 2 < 1 when AT > 86.9 "C corresponding to c > 8.60. This 
agrees well with c a t  the maximum Roc in figure 3, and figure 4 demonstrates that the 
intrinsic aspect ratio aczp becomes constant a t  large c. However, 2 is a complicated 
function of c, and therefore fro, B and zp will not converge to simple relations like 
(13)-(16). One can calculate the scale depth dof the viscosity variation a t  the base of 
a glycerol layer and use it to define and a". However, neither becomes constant a t  
large c and they are clearly not as useful as for exponential fluids. 

It is clear from (12) that formation of a sublayer requires 

This condition is never satisfied for the Palm-Jenssen fluid. Regardless of the viscosity 
ratio we would not expect a stagnant lid with the convection squeezed into a sublayer 
much thinner than the vertical scale of the layer, or the convection wavenumber to 
become much larger than a t  constant viscosity. There is also no basis for expecting R 
to be useful for Palm-Jenssen fluids because d = 0. In fact, it is clear from figure i 
that it is Roc that becomes constant as c becomes large. 

The contrast between Palm-Jenssen and exponential fluids is further illustrated 
by the eigenfunctions for c = 10 in figures 7 (a, b ) .  Figure 7 (a) compares the B/F case 
for the two types of fluid. Despite the large viscosity ratio, the horizontal velocity a t  
the top boundary of a Palm-Jenssen fluid is almost as large as for a const,ant-viscosity 
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FIGURE 7.  (a)  A comparison of the vertical-velocity eigenfunctions for the Palm-Jenssen and 
exponential fluids with F/F boundaries and c = 10. The vertical derivative of these functions 
is proportional to the horizontal velocity. Note that the horizontal velocity a t  the top boundary 
is large for the Palm-Jenssen fluid and very small for the exponential fluid. Note also that the 
peak of the eigenfunction is much lower in the exponential fluid layer. Compare the Palm- 
Jenssen eigenfunction to the c = 0, F/F case in figure 4. ( b )  A comparison of the horizontal- 
velocity eigenfunctions for the Palm-Jenssen fluid with F/R and F/F boundaries and c = 10. 
Note that only the bottom 10% of the layer is shown. The eigenfunctions are nearly identical 
throughout the rest of the layer. The accommodation to the lower rigid boundary occurs in the 
bottom 2 yo of the layer. 

fluid. Figure 7 ( b )  is the horizontal velocity eigenfunction near the bottom boundary 
for the F/F and F/R cases in a Palm-Jenssen fluid. The functions are very similar 
except in a boundary transition region occupying only 2 yo of the total layer thickness. 
This is evidently why a Palm-Jenssen fluid seems to forget a rigid bottom boundary 
a t  large viscosity ratio. 

Finally, an obvious alternative definition of the Rayleigh number is w, using the 
mean viscosity i j  in the fluid layer. For Palm-Jenssen fluids) li = vo and R = Ro. 
For the exponential fluid, - 

- sinhic 
v=vO-) t C 

and = (vo / i j )  R,. R, and Roc for Palm-Jenssen and exponential fluids with F/F 
boundaries are plotted together in figure 8. Three things are evident: Re decreases 
for both fluids; at small viscosity ratio (c 5 1)  Bc is more constant than Roc; and a t  
large viscosity ratio R, decreases rapidly, showing no evidence of the structure in Roc 
associated with the formation of the sublayer. At large c, li is heavily weighted by the 
viscosity in the stagnant lid. Thus it is obvious that is not a very relevant parameter. 
At small c, R is clearly useful. In general, however, the slight advantage of B over Ro 
at small c is probably outweighed by the difficulty of calculating R. 
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FIGURE 8. R,, and Ec versus viscosity ratio for Palm-Jenssen 
and exponential fluids with F/F boundaries. 

5. Apparatus 
The viscosity ratio of 10 reached by Hoard et al. (1970) is really rather small. At 

c = 2.3 (viscosity ratio = lo),  we predict only a 5 yo increase in Roe, which would be 
very difficult to detect (see figure 3). The roughly 50 Yo increase in Roc predicted a t  a 
viscosity ratio of lo3, however, should be much easier to measure. 

To achieve large viscosity variations within a reasonable temperature range, we use 
anhydrous glycerol as the working fluid. The viscosity of anhydrous glycerol varies by 
a factor of 4200 between + 70 and - 20 "C. The freezing point of pure glycerol is about 
+ 18 "C, but it passes into a supercooled, glassy state below 18 "C with no decrease in 
specific heat and continuous variation of other properties. Transition to an amorphous 
solid with release of latent heat requires cooling to below - 50 "C. The ease of obtaining 
glycerol in a highly pure form, its safety as a laboratory fluid, its good optical trans- 
mission, and the comprehensive literature on its properties (Newman 1968) are 
considered sufficient compensation for the experimental problems that arise because 
of its hygroscopic nature. 

The fluid layer in our circular apparatus is 26 cm in diameter and 1.2 cm thick 
giving an aspect ratio of 22: 1. This is an uncomfortably small aspect ratio, but it seems 
to be a necessary compromise for large viscosity ratios. The size is dictated by the 
dissiDation canacitv of our refrineration svstem at - 20 "C. An asnect ratio of 80: I 

I I d  D ./ I 

such as used in the high-quality structure studies for constant viscosity by Busse & 
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FIGURE 9. Cross-section of the experimental apparatus. 

Whitehead (1971) and for small viscosity ratios by Richter (1978) would require 
dissipating 6 k W  at  - 20 "C, a difficult and extremely expensive proposition. 

A cross-section of the apparatus is shown in figure 9. The top plate is aluminium 
which has been polished flat by the techniques used to make telescope mirrors and 
then nickel-plated to give a highly reflecting surface. Ethyl alcohol cooled by the 
refrigerator circulates in a spiral trough milled in the top plate. Lateral temperature 
variations at  the top of the fluid layer are less than lo-SAT. The bottom plate is a 
sandwich of Pyrex glass and Plexiglas separated by a very thin gap. Hot fluid from a 
circulating bath enters a t  the centre of the Plexiglas plate and flows in the gap to a 
trough cut in the Plexiglas a t  the perimeter of the cell. The dimensions of the trench 
are such that the pressure gradient in it is small compared to the gap. This ensures 
radial flow of the heating fluid. The temperature drop between the centre and peri- 
meter of the bottom boundary is about 10-3AT. 

The plastic ring that confines the glycerol laterally is 1.2 em thick and 1.75 em wide. 
It extends well into the region heated by the circulating fluid so that the vertical 
temperature profile on the inside edge of the ring closely matches the linear con- 
ductive profile in the glycerol. Thus the wide ring isolates the fluid layer from tempera- 
ture inhomogeneities near the edge of the apparatus without the severe loss of aspect 
ratio entailed by a separate isolation ring in the interior of the fluid. 

The temperature of the top boundary is measured to +_ 0.1 "C with a copper- 
constantan thermocouple referenced to a commercial ice-point cell. In an initial series 
of experiments, the temperature a t  the boundary was measured using a thermocouple 
glued to the top of the glass plate. In a subsequent series intended primarily to measure 
heat transport, the thermocouple was replaced with a 0.025 mm diameter platinum 
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wire along a diameter of the cell and the temperature was determined to i O . 3 " C  
from the wire's resistance. The platinum wire is much thinner than the thermocouple 
and has the additional advantage of spatially averaging the boundary temperature. 

For the heat-transport measurements, the temperature in the circulating fluid gap 
was also measured with a thermocouple. The heat transport was then calculated from 
the temperature drop through the bottom plate. The conductivity of the plate was 
measured by comparing the temperature drop through the glass to quartz in a geo- 
metry where the heat flow through the glass and quartz was the same. 

Parallel or slightly divergent light shines in the bottom of the cell, passes up through 
the convecting fluid, is reflected, passes again through the convecting fluid and thence 
out of the bottom to a glazed screen. Cold regions in the glycerol focus the light and 
warm regions defocus it, giving a 'shadowgraph' picture of the convection pattern. 
The added complication of a reflecting top plate is critical in obtaining large viscosity 
ratios because we are operating near the capacity of the cooling system. The tempera- 
ture drop across a less-conducting glass top would significantly increase the minimum 
top-boundary temperature. 

Anhydrous glycerol is extremely hygroscopic, and to maintain its very strong 
viscosity variation one must take special precautions to exclude water from the cell. 
To do this, we initially fill the cell with dry nitrogen. The glycerol then displaces the 
gas as the cell is filled while slightly tilted. A flexible expansion bottle partially filled 
with glycerol is connected a t  all times to the cell to compensate for volume changes 
which can occur when the cell is placed in operation. The fluid and expansion bottle 
are maintained at a slightly positive pressure, which prevents bubbles forming in the 
convecting layer if the glycerol contracts, discourages leakage of water into the 
apparatus, and compensates for the positive pressure created by the circulating pump, 
thus reducing flexure of the bottom glass plate. Measurement of the viscosity before 
and after a run confirms that no water contamination has occurred. 

6. Properties of glycerol 
Based on the data compiled in Newman (1968), our best estimates of the properties 

other than viscosity of anhydrous glycerol in the temperature range T = 0-50 "C are: 

(17 )  a = [47 & 1 -t 0 . 2 ( T  - 20)]  x ("C-l), 

p = 1-261 34 [l - (47 x 10-5) (T - 2 0 ) ]  

1 / ~  = 1002 & 25 + 2.7811 

(g 

( s  

cp = ( 5 4 + 0 . 5 $ 0 - 1 5 T ) x  (calg-l), (18) 

k: = (68 & 1) x (cal cm-ls-l "C-1 1. 
The stated uncertainties are valid throughout the temperature range, with the 
exception of the thermal expansion coefficient a. The temperature derivative of a is 
the second derivative of p, and is extremely difficult to determine accurately. Based on 
several types of data in Newman (1968), a minimum range for the temperature 
coefficient in (17) is 0-15-0-3.  The uncertainty in p is not given because it is estimated 
to be much less than 1 % .  

The source of the usual standard tables of the viscosity of glycerol (and its aqueous 
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Temperature ("C) 

FIGURE 10. Dynamic viscosity of anhydrous glycerol versus temperature. The crosses are our 
measurements with a cone-plate viseometer. The open circles are from Segur & Oberstar (1951). 
The open squares are from Tamman & Hesse (1926). The solid curve is from the empirical 
relation (23). 
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4.2 
9.1 

10 
14.0 

1 (P) 
1220 
501 
256 
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120 
73.3 
42.0 
38.9 
25.1 

T ("C) 
19.3 
20 
30 
40 
50 
GO 
70 
80 
90 

?I (P) 
15.0 
14.1 
6.10 
2.83 
1.42 
0.81 1 
0,504 
0.318 
0.212 

TABLE 1.  Measured value of the dynamic viscosity of anhydrous glycerol. The values at  0, 10, 
20 "C and higher are from Segur & Oberstar (1951), corrected for a viscosity of water equal to 
0-01002 P a t  20 "C. 

solutions) in the temperature range from 0-100°C (e.g. Newman 1968) is Segur & 
Oberstar (1951) .  They used capillary viscometers carefully corrected for effects of 
temperature on the calibration. Below 0 "C, the only major study of the viscosity of 
anhydrous glycerol is by Tamman & Hesse (1926)  (compiled in Newman 1968). They 
use a falling-ball viscometer. Data between - 25 and + 20 "C from the two sources are 
plotted in figure 10. At 0 "C, these data are clearly inconsistent. Tamman & Hesse's 
predicted viscosity is 27 yo below Segur & Oberstar's. 

7/Tie have re-measured the viscosity of spectral-quality pure glycerol throughout the 
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FIGURE 11. Heat flux in a fluid with large viscosity variation ( c  = 5.0). The circles are experi- 
mental points. The curve is a theoretical fit of Oliver (1980, 1982). The vertical part of the 
theoretical curve is drawn at  R:, the Rayleigh number at which the convective pattern would 
first be observed optically, deduced from a separate series of experiments. 

experimental temperature range using a cone-plate viscometer. The viscometer is 
calibrated against a silicone-oil viscosity standard and is immersed in a dry nitrogen 
atmosphere. Our data below 20 "C are listed in table 1 and plotted in figure 10. Within 
the & 2 yo error of our measurements, our data are in agreement with Segur & Oberstar 
above 0 "C. Our measured point a t  - 16.5 "C is 56 % above the viscosity interpolated 
from Tamman & Hesse a t  this temperature. Since our subzero data join smoothly onto 
the results above 0 "C, we conclude that Tamman & Hesse must be systematically in 
error. Finally, after converting from dynamic to kinematic viscosity, the curve 

v = exp(4.5490-0.12309T+9.1129 x 10-4T2-4.7562 x 10-4T3 

+ 1,3296 x 10-sT4) (19) 
fits all the data in table 1 within & 2 %. 

7. Experimental results 
Whenever the material properties of the fluid depend on temperature the possibility 

of subcritical finite-amplitude instabilities (Busse 1967) must be considered in the 
experimental procedure. Figure 11 shows the expected parabolic form of the relation 
between the Rayleigh number and the Nusselt number N (ratio of total heat transport 
to conductive heat transport). For increasing R,, N should follow the solid line with a 
finite jump a t  Roc. For decreasing R,, N will follow the dashed curve until it reaches the 
minimum R, at which a finite-amplitude disturbance is possible, where N will jump 
back to 1.  To avoid this hysteresis, we always approach Roc from below. 

A typical run involves increasing the bottom-boundary temperature in steps of 
0.2-0.5 "C. This strategy keeps c nearly constant as R, increases. A more desirable 
strategy of increasing the layer depth with AT fixed is experimentally intractable, and 
an alternative strategy of decreasing the top temperature causes c to vary rapidly with 
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FIGURE 12. The crosses are measured values of R:, the Rayleigh number at  which the convection 
pattern is first observed optically. The circles are values of the critical Rayleigh number Roo 
obtained by correcting R: for the effect of the jump in Nusselt number on the boundary 
temperatures. The theoretical curves use the actual experimental boundary conditions. The solid 
ourve assumes a and c, vary with temperature according to (17) and (18). The dashed curve 
assumes a and c, constant. 

AT. The equilibration time for the heating and cooling units is approximately equal 
to the thermal time constant of the fluid layer, and we wait about ten times the layer 
time constant before proceeding to the next step. The curvature and rate of change of 
the temperature profile are small enough that they should have a negligible effect on 
R, even at  low viscosity ratio where the temperature difference across the layer is least 
(Krishnamurti 1968). 

Detection of Roc presents several practical problems. Figure 1 1  also shows measure- 
ments of N at c = 5.0. N is observed to jump about 10 % a t  onset. Extrapolation of 
values of N for R > Roc back to N = I as is usual for constant viscosity would give 
Roc 20 % below its true value. It is therefore necessary to directly observe the jump in 
N at Roc. Unfortunately the experimental scatter in N exceeds the jump for c c 5, 
and reliable determination of R,, from the Nusselt-number measurements is not 
possible. 

We therefore used the appearance of the convective pattern on the shadowgraph 
screen to detect onset. Because of the large temperature difference across the fluid 
(AT > 20 "C) and the finite amplitude of the initial convection, there is little danger of 
over-estimating AT, because the amplitude at  critical is too small to observe. The 
vertical solid line in figure 11 is drawn at R:, the value of Ro a t  which the pattern is 
first observed, interpolated from an experimental run in which appearance of the 
pattern was the only criterion for onset. It is clear that the visual onset is in excellent 
agreement with the observed discontinuity in N .  Over the full range of c, the visually 
determined R: always lies within the uncertainty of the value of R, at  which the jump 
in N occurs. 
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The observed pattern a t  onset was usually observed to be up-hexagons (up-flow in 
the centre). An experiment with very small viscosity variation (c = 0.12) using silicone 
oil produced only concentric rolls. At small to moderate c in glycerol an initial pattern 
of rolls always broke up into hexagons after the apparatus had been allowed to sit 
with constant AT for several hours. The subsequent development of the pattern as R 
increased above Roc is quite interesting, and is discussed in detail elsewhere (Oliver 
1980, 1982). To summarize, however: For c < 2 the hexagons convert to rolls at an R 
that increases with c in excellent agreement with theoretical predictions of Busse 
(1967); for c > 2 the hexagons convert to  irregular polygons a t  an R that decreases 
rapidly with increasing c so that the range of stability of hexagons becomes very small 
at large c; for c 2 4 the polygons convert to  squares with a modest further increase 
in R. Oliver finds that the large amplitude of the flow a t  Roc precludes study of the 
square pattern by the methods of Busse (1967). 

Observed values of Rt for c = 2-0-8.1 (viscosity ratios from 7-3400) are plotted as 
crosses in figure 12. However, RZ is not Roc. The experiment regulates the temperature 
below the glass bottom. The increase in N as the convection begins increases the 
temperature drop across the glass plate, and hence decreases AT and R,. The final 
equilibrium is AT" and RZ which we measure. Convection continues in the layer in 
a finite-amplitude subcritical state. However, the actual critical temperature drop 
across the fluid prior t o  the increase in N is easily shown to be 

AT, = (1 +g) AT*, 

where N - 1 is the jump in Nusselt number at Roc, and N, = 7.345 is the ratio of the 
temperature drop across the fluid layer in a purely conductive state to that across the 
glass plate. 

Figure 13 plots measured values of ( N  - 1)a versus c. These are estimated by extra- 
polating subcritical values of N back to R:. Plotting the square root of the jump in 
Nusselt number is motivated by the parabolic shape of the theoretical heat-flux 
relation in figure 11. Although the uncertainty is fairly high, the straight line 

( N -  1 ) i  = 0 . 0 6 3 5 ~  (20) 

is an excellent fit to the most-probable values. This relation slightly underestimates 
the jump a t  Roc because R$ < Roc. However, this error is small compared with the 
experimental uncertainty. 

The calculated values of Roc using (20) are shown as circles in figure 13. The cor- 
rection to R*, is only 3 k 1 yo a t  c = 5, but rises to 15 k 3 yo a t  c = 8.1. 

The experimental points should be compared to  the solid theoretical curve in 
figure 12. This curve assumes that a and cp vary with temperature according to (17) 
and (18), and that To varies with c in the same way as in the experiment. The variation 
of To is included because the non-dimensional fluid property functions f, A and Q 
derived from (19), ( 1  7) and (18) depend on the actual value of To. Fortunately, To in 
the experiments decreases smoothly as c increases, so that the calculated values of 
Roc remain on a smooth curve. The dashed theoretical curve in figure 12 assumes that 
a and cp are constant, and is shown for comparison. The difference between the two 
theoretical curves grows as c increases, and exceeds 10 Yo for c > 6. It is worth noting 
that this correction can he calculated quite accurately ( < 10 yo) by evaluating CL and 
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FIGURE 13. Square root of the measured jump in Nusselt number N at 
R,* versus viscosity ratio. The line is relation (20). 
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cp at p(zp), the temperature a t  the peak of the vertical velocity eigenfunction, rather 
than at  To. The theoretical calculations also take into account the finite conductivity 
of the lower boundary in the experimental apparatus and therefore have a lower Roc 
a t  constant viscosity than with a perfectly conducting boundary. This lowering of Roc 
depends only on N B .  

Our estimated uncertainties in the properties of glycerol plus the 0.25% un- 
certainty in the layer depth could account for up to & 7 % c-independent uncertainty 
in the experimental values of Roc. The actual mean difference between theory and 
experiment is only 2 %, with a maximum difference less than 4 %. The trend of the 
differences with c can be adequately accounted for either by the uncertainty in the 
correction for the finite jump in N or the uncertainty in the temperature gradient of 
the thermal expansion coefficient a. 

8. Conclusions 
Liquids have a viscosity that decreases with increasing temperature and that 

typically can be well-approximated by an exponential or super-exponential function 
with a steeper viscosity gradient a t  low temperatures. We find for these fluids that the 
theoretical critical Rayleigh number Roc based on the viscosity at the mean of the 
boundary temperatures increases as the ratio between the boundary viscosities 
initially increases. If the logarithmic temperature derivative of the viscosity is 
sufficiently negative, Roc reaches a maximum at  a critical viscosity ratio. In the large- 
viscosity-ratio regime above this critical viscosity ratio, Roc decreases, and the onset 
of convection is governed by a sublayer that is more unstable than the full layer. 



430 K .  C. Stengel, D. S.  Oliver and J. R. Booker 

A lower effective viscosity within this sublayer outweighs the stabilizing effect of the 
sublayer’s reduced thickness. 

For fluids with an exponential viscosity variation, the critical viscosity ratio is 2981. 
At higher viscosity ratios, convection begins first in the sublayer that has a viscosity 
ratio equal to this critical value. The fluid above the sublayer can be considered 
stagnant, and the structure of the convection within the sublayer remains constant 
with respect to the thickness of the sublayer. In  particular, the half-wavelength of the 
convection always equals the sublayer depth. Our calculations for glycerol lead to 
essentially the same conclusions, although the critical viscosity ratio is somewhat 
higher. 

Our numerical results for exponential and super-exponential viscosity variations 
are in clear contrast to the calculation by Liang (1969) for a fluid similar to glycerol, 
and to the work of Palm (1960) and Jenssen (1963) for a fluid with a cosine viscosity 
variation. All these workers find a decrease of Roc as the viscosity ratio increases. It is 
clear now that Liang’s work is in error. Palm and Jenssen’s results are correct, but not 
relevant to real liquids. Not only is the direction of change in Roc different a t  small 
viscosity ratio, but the structure of the convection a t  large viscosity ratio is funda- 
mentally different. The stagnation of the upper part of the layer and the oonfinement 
of the initial convection to a sublayer never occurs with the cosine viscosity variation. 
Furthermore, the cosine variation develops a thin slippery region a t  the bottom 
boundary which makes results for rigid and free lower boundaries nearly identical a t  
large viscosity ratio. This behaviour is opposite to the exponential fluid and glycerol. 
Alt’hough the cosine viscosity variation has useful properties for theoretical calcu- 
lations, it is clear that one must be extremely careful about applying results derived 
from this model to real liquids. 

Our experiment with glycerol confirms the initial increase of Roc with viscosity ratio. 
As the viscosity ratio becomes large, however, accurate determination of Roc when 
the boundaries are not infinitely conducting requires accounting for the effect of the 
finite discontinuity in heat transport a t  Roc on the measured boundary temperatures. 
We observe a maximum Roc 33 yo above the constant-viscosity value of a viscosity 
ratio of about 1200. At higher viscosity ratios, the measured Roc decreases. 

For our glass-bottomed apparatus, numerical calculations with constant thermal 
expansion coefficient and specific heat predict a maximum Roc 48% above the 
constant-viscosity value a t  a viscosity ratio of about 2500. The maximum viscosity 
ratio of 3400 reached in our experiment is barely in the large-viscosity regime. The 
measured maximum and subsequent decrease in Roc is not due to the formation of the 
sublayer but is a result of the temperature dependence of the thermal expansion 
coefficient and specific heat. Numerical calculations including the empirical tempera- 
ture-dependence of the thermal properties of glycerol predict values of Roc in excellent 
agreement with the experiment. We conclude that the linear stability analysis is valid 
despite the non-existence of an infinitesimal-amplitude state a t  Roc. 
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